
Discrete Ordinate Method for Solving Inhomogeneous Vector Radiative
Transfer Equation

We describe here a solution method for equations of the type
given by:

µ
∂ I(τ,µ)

∂τ
+ I(τ,µ)− ω(τ)

2

∫ 1

−1
Z(τ,µ,µ ′)I(τ,µ ′)dµ

′ = Q(τ,µ),

where I and Q are Stokes vectors, and the Z are Mueller matrices
as detailed in the main paper.. This type of equation appears when
modeling radiative transport in plane parallel media. We will as-
sume here that the plane parallel medium is described by one or
more homogeneous layers (see Figure 1), that means the function
Z and ω in each layer are constant in one layer. For simplicity
of explanation, we first describe solution methods for the equation
corresponding to a single homogeneous layer. We then generalize
the methods to account for multiple layers. The above equation for
a single homogeneous layer of thickness τ0 can be rewritten as:

µ
∂ I(τ,µ)

∂τ
+ I(τ,µ)− ω

2

∫ 1

−1
Z(µ,µ ′)I(τ,µ ′)dµ

′ = Q(τ,µ) (1)

or in a compact operator notation as:

L [I(τ,µ)] = Q(τ,µ) (2)

where

Q(τ,µ) =
ω

2
Z(τ,µ,µinc)Iinc(µinc)e−τ/µinc (3)

and L an integro differential operator as expanded in equation 1.
In classic differential equations literature, equations similar to

(2) are called inhomogeneous equations, and Q’s on the right hand
side are called the inhomogeneous terms. A standard way of com-
puting the solution to inhomogeneous equations is: find solution Ih
to the homogeneous form of the equation such that,

L [Ih(τ,µ)] = 0 (4)

and then find a particular solution Ip that satisfies the original equa-
tion, i.e.

L [Ip(τ,µ)] = Q(τ,µ) (5)

and compose the final solution as a combination of the two, i.e.
I = Ih + Ip (definition 1.15 in [1], page 6).

Applying Gaussian quadrature scheme to the integral term in
equation 1 gives us a system of N equations

µi
∂ I(τ,µi)

∂τ
+ I(τ,µi)−

ω

2

N

∑
j=1

α jZ(µi,µ j)I(τ,µ j)

= Q(τ,µi) (6)

where µi’s and αi’s are the Gaussian quadrature angles and weights
respectively. So we must solve this system of equations.

Figure 1: Material composed of three plane-parallel layers. The com-
putation of the radiance at an optical depth of τ in a direction µ re-
quires solving light transport in each layer.It involves the computation
of the scattered radiance along µ from all direction (in red) and the
scattering of the attenuated incident radiance (in yellow).

1 COMPUTING HOMOGENEOUS SOLUTION Ih

The first step in computing I(τ,µi), the solutions of equation 6, is
to compute a homogeneous solution Ih that satisfies:

µi
∂ Ih(τ,µi)

∂τ
+ Ih(τ,µi)−

ω

2

N

∑
j=1

α jZ(µi,µ j)Ih(τ,µ j) = 0 (7)

Such an equation is known to have exponential solutions, so we
rewrite I as [2]:

Ih(τ,µi) = Φ(µi)e−τ/ν

where Φ(µi)’s are 4 element vectors and ν are scalars, both being
unknowns.

Substituting this in equation 7 and using the relation

∂ Ih(τ,µi)

∂τ
=− 1

ν
Φ(µi)e−τ/ν (8)

we get a linear system of equations:

−µi

ν
Φ(µi)+Φ(µi)−

ω

2

N

∑
j=1

α jZ(µi,µ j)Φ(µ j) = 0, (9)

When written in a matrix form, (9) gives us an eigenproblem:

M


Φ(µ1)
Φ(µ2)

...
Φ(µN)

=
1
ν


Φ(µ1)
Φ(µ2)

...
Φ(µN)

 (10)

where each 4×4 subblock of M is defined as:

Mi j =
1
µi

(
I4−

ω

2
α jZ(µi,µ j)

)
(11)

I4 being a 4×4 identity matrix.



Solution of this eigenproblem gives us a set of 4N eigenvectors
Φi and eigenvalues νi. So we express our solution to equation 7 as
a linear combination of the eigenvectors:

Ih(τ,µi) =
4N

∑
k=1

LkΦk(µi)e−τ/νi . (12)

where Lk’s are the scalar factors that must be determined.
Thus the computation of the homogeneous solution requires

eigensolution of a matrix of size 4N×4N.

2 COMPUTING PARTICULAR SOLUTION

One common approach to finding a particular solution Ip to the in-
homogeneous equation 6 is to express it in the same form as the
inhomogeneous source term Q(τ,µi). To simplify the discussion
we rewrite Q(τ,µi) shown in (3) as:

Q(τ,µi) = X(µi)e−τ/µinc (13)

So the particular solution we seek can be expressed as:

Ip(τ,µi) = Y(µi)e−τ/µinc (14)

where Y(µi)’s vectors of 4 unknown elements.
Substituting (13) and (14) in (6) and using the relationship

∂ Ip(τ,µi)

∂τ
=− 1

µinc
Y(µi)e−τ/µinc (15)

we get:

(1− µi

µinc
)Y(µi)−

N

∑
j=1

α jZ(µi,µ j)Y(µ j) = X(µi) (16)

So we have a system of 4N linear equations with N unknown vec-
tors Y, so a total of 4N unknowns. We can use a linear system
solver to compute these unknowns.

3 COMPUTING I
Having computed the homogeneous solution and the particular so-
lution, we can compose our I terms as

I(τ,µi) = Ih(τ,µi)+ Ip(τ,µi) (17)

Note that we still have 4N unknown Lk’s in the expression of Ih
(see equation 12). We finally compute these unknowns by using the
boundary conditions at τ = 0 and at τ = τ0.

Assuming that the incident radiance field at the top of the ma-
terial volume layer is zero, and that the material is placed on top
of a black body so that no light is entering from the bottom, the
boundary conditions are as follow.

Ih(0,µi)+ Ip(0,µi) = 0 (18)

where µi’s are negative, and

Ih(τ0,µi)+ Ip(τ0,µi) = 0, (19)

where µi’s are positive.
Each of these boundary conditions account for N/2 equations

involving 4 elements vectors, so a total of 4N equations for 4N
unknowns. We solve for the unknown Lk’s by solving the system of
equations.

Note that it is not required to assume a black body interface at
the bottom of the layer. If we know the BRDF of the base material
on top of which our plane parallel material is placed, then we can
compute the radiance field for the positive angles at τ = τ0 from the
the radiance field for the negative angles at the same location and
the BRDF of the base material, and get the required N/2 equations.

4 MULTIPLE LAYERS

At this point we know how to solve equation 1 for a single ho-
mogeneous layer. These computations can be extended to a mate-
rial composed of Nz homogeneous layers placed one on top of the
other. The single layer computation discussed earlier can be ap-
plied independently to find I’s at each layer as a combination of
both homogeneous and particular solutions for the layer. However,
one thing remains to be computed: the N unknown constant Lk’s
for each layer that are used to combine individual eigenvector based
homogenous solutions (see equation 12). In section 3, we discussed
how to compute them for a single layer. To extend that method to
multiple layers, we need to compute Nz×N unknowns and so we
need Nz×N linear equations to solve for these unknowns. The two
boundary conditions (18) and (19) of the top surface and bottom
surface of the first and the last layer respectively make N linear
equations. The remaining (Nz− 1)×N equations come from the
(Nz−1) interfaces between Nz layers. The function I must be con-
tinuous at the interface between the layers. Therefore, using Iz(τ)
to denote the I field at layer z, and τz to denote the thickness at the
bottom of that same layer we write:

Iz(τz,µi) = Iz+1(τz,µi), z ∈ {1, · · · ,Nz−1}, i ∈ {1, · · · ,N} (20)

Thus in total we get Nz×N equations. We solve this linear set of
equations to compute the unknown Lk’s for all the Nz layers.

5 ALGORITHM

We summarize all the steps of the solution in algorithm 1.

Algorithm 1 main()
1: ComputeHomogeneous();
2: ComputeParticular(µinc);
3: ComputeRadianceField(µinc);

ComputeHomogeneous() solves the eigenproblem defined
in section 1, giving us all the eigenvectors (Φ’s) and eigen-
values (ν’s). ComputeParticular() computes the un-
known vector Y (14) for every µinc of the incident direc-
tion, so that the particular solution can be fully reconstructed.
ComputeRadianceField() computes the constants Lk using
the method presented in section 3. The homogeneous solution is
independent of the incident direction, therefore when applying this
algorithm to BRDF computations, one would solve the homoge-
neous problem only once and re-use the same solution for each in-
cident direction.
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