
Vis Comput
DOI 10.1007/s00371-013-0845-x

O R I G I NA L A RT I C L E

Visibility-driven progressive volume photon tracing

Charly Collin · Mickaël Ribardière · Adrien Gruson ·
Rémi Cozot · Sumanta Pattanaik · Kadi Bouatouch

© Springer-Verlag Berlin Heidelberg 2013

Abstract In this paper, we present a novel approach to
progressive photon-based volume rendering techniques. By
making use of two Kd-trees (built in a preprocessing step)
to store view beams (primary rays intersecting the medium)
and visible points, our method allows to handle scenes with
specular and refractive objects as well as homogeneous and
heterogeneous participating media and does not require the
storage of photon maps, which solves the memory manage-
ment issue. These data structures are used to drive the pho-
ton shooting process by considering the photon visibility as
an importance function (similarly to Hachisuka and Jensen
in ACM Trans. Graph. 30(5):114:1–114:11, 2011) for
scenes containing participating media. Finally, we demon-
strate that our method can be easily combined with the most
recent particle tracing approaches such as the one presented
in Jarosz et al. (ACM Trans. Graph., vol. 30(6), 2011).

Keywords Rendering · Global illumination · Participating
media · Markov chain Monte Carlo

C. Collin · S. Pattanaik
University of Central Florida, Orlando, USA

C. Collin
e-mail: charly.collin@bobbyblues.com

S. Pattanaik
e-mail: sumant@cs.ucf.edu

M. Ribardière (�) · A. Gruson · R. Cozot · K. Bouatouch
IRISA, Université de Rennes 1, Rennes, France
e-mail: mickael.ribardiere@irisa.fr

A. Gruson
e-mail: adrien.gruson@irisa.fr

R. Cozot
e-mail: remi.cozot@irisa.fr

K. Bouatouch
e-mail: kadi.bouatouch@irisa.fr

1 Introduction

Rendering participating media (volume data) with multiple
scattering in reasonable time still is a challenge. Indeed,
computing light transport within such media is very de-
manding in terms of computing time and memory storage.
Accurate and unbiased methods exist such as path tracing or
other Monte Carlo based approaches. However, these meth-
ods get limited practically even for participative media of
moderate complexity.

Fortunately, less precise but faster methods have been
proposed in the last two decades, such as the photon map-
ping technique [8]. This latter has been first applied to sur-
faces then extended to participating media, and is called
Volume Photon Mapping [9]. This method consists in emit-
ting photons from light sources. These photons bounce off
surfaces and interact with participating media in the scene.
They get registered at each interaction with surfaces and par-
ticipating media, creating records stored in a photon map.
This photon map is used by a rendering step.

However, to compute the radiance at a visible point, an
expensive final gathering or ray marching step is needed,
depending on whether the point is on a surface or inside a
volume. The rendering step starts only once all the photons
have been emitted from the light sources. If the resulting
image is not satisfactory, it is not possible to send additional
photons to improve it. Consequently, to get a more accurate
image a larger set of photons has to be emitted from scratch
without exploiting all previous computations.

To cope with this problem, a method called progressive
photon mapping [3] has been proposed. It allows to improve
a resulting image by sending more and more additional pho-
tons. For each pass, a new set of photons is emitted and the
resulting image is updated. Therefore, a preview is available
after each iteration. This approach has since been extended

mailto:charly.collin@bobbyblues.com
mailto:sumant@cs.ucf.edu
mailto:mickael.ribardiere@irisa.fr
mailto:adrien.gruson@irisa.fr
mailto:remi.cozot@irisa.fr
mailto:kadi.bouatouch@irisa.fr

C. Collin et al.

to volume rendering with techniques such as the one pre-
sented in [11].

The goal of this paper is to propose a novel approach to
progressive photon mapping for scenes containing surface
and volume objects. Our method allows to handle scenes
with specular and refractive objects as well as homogeneous
and heterogeneous participating media. It does not need to
store photons in photon maps. During the shooting process,
the visibility information allows knowing if a photon, hit-
ting a surface or a volume, contributes to the final image or
not. This visibility information is then used as a target sam-
pling function to guide the photon shooting process so as to
generate more contributive photon paths as in [2].

The main contributions of this paper are:

• the shot photons are not stored, they are discarded once
they have contributed to visible points and beams, conse-
quently the number of photons per pass is not limited;

• preprocessing is performed after every N passes, which
allows removing aliasing artifacts efficiently;

• light paths are guided by visibility information for sur-
faces and participating media using a Metropolis strategy,
which allows to handle complex lighting conditions such
as environment maps, lighting through a double-glazed
window, etc.

The next section provides information about the related
works while Sect. 3 gives some technical background. An
overview of our approach is given in Sect. 4, while details
on our method are presented in Sect. 5. Finally, results are
given in Sect. 6 before concluding.

2 Related work

The first method based on photon mapping and coping with
participating media is Volume Photon Mapping [9]. It al-
lows to simulate interactions between photons and partici-
pating media and to build a volume photon map. However,
its costly rendering step consists in casting a ray from the
camera through the volume and in using ray marching to
gather the photons (stored in the photon map) close to the
ray to compute their contributions. Volume photon mapping
yields good results but it suffers from the same limitations
as those of photon mapping: A huge number of photons is
needed to render complex scenes. As a large number of pho-
tons requires a lot of memory, the rendering quality is lim-
ited by the available memory of the used computer. More-
over, ray marching, needed to retrieve nearby photons, is
very expensive. The smaller the ray marching steps, the bet-
ter the results, but also the longer the rendering. So Volume
Photon Mapping has two limitations: high computation time
and large memory requirement.

The Beam Radiance Estimate [7] method is one way to
reduce the rendering time. In this method, each photon has

an influence area, which is a disk of variable radius. An iso-
lated photon is assigned a large radius while a smaller one is
assigned to photons that are close to each other. To estimate
the radiance of a ray cast from the camera, all the photons,
within a distance from the ray that is smaller than their ra-
dius, are considered. This method speeds up the rendering
process and also adapts to the density distribution within
the volume and to the lighting conditions. When rendering
scenes with sparse photon distribution, the Beam Radiance
Estimate gives better results than the usual ray marching but
remains costly when used for complex scenes. Indeed, the
contribution of a ray needs the traversal of a hierarchy of
spheres which takes time for a high number of photons.

Progressive Photon Mapping [3] (PPM) addresses the
memory limitation problem. It is a progressive rendering
method consisting in computing a noisy image that is im-
proved after each pass. At each pass, only a limited num-
ber of photons are emitted then discarded when running the
next pass. Therefore, only the photons emitted at the current
pass are saved in memory. To each visible point is assigned a
disk, and only the photons within this disk are used to com-
pute the radiance at this point. The radius of a disk decreases
after each pass to reduce the bias of this method. A Proba-
bilistic Approach [11] (APA) of photon mapping is also a
progressive method that handles scenes containing partici-
pating media. It allows to render many noisy images of a
same scene that are merged to get a final image.

Another interesting approach, called the Progressive
Photon Beams [6] (PPB), is close to ours but proceeds dif-
ferently. It consists in shooting photon beams (instead of
photons) from the light sources and storing them in a BVH
data structure. For radiance estimation, the visible photon
beams are decomposed into those that are handled using
GPU through rasterization, and those handled by the CPU
ray tracer.

Although PPB requires less memory than a classical
photon-based method, its complexity increases with the
number of light sources. Indeed, in case of many area light
sources the budget of photon beams generated from one
light source would be limited due to the memory constraint,
which slows down the convergence to a good quality im-
age. As it depends only on the image resolution (as will be
explained later on), our approach overcomes this limitation.
Note that PPB can be easily combined with our approach as
shown in Sect. 6.

Another volume rendering method [13] relies on VPLs
(Virtual Point Light) [10]. The method considers the light
paths as VRLs (Virtual Ray Lights) rather than photon
beams. Some improvements of this method have been pro-
posed in [12]. This is an interesting method that proceeds
differently from our approach.

Discussion While the above methods provide good results,
they still suffer from a few issues or proceed differently from

Visibility-driven progressive volume photon tracing

our approach. Indeed, the more complex the scene, the big-
ger the memory budget for each pass (whether for photons
or beams) and the higher the number of passes (iterations).
Also, in [6, 11], a new hierarchy must be computed from
scratch at each pass, hence adding a nonnegligible computa-
tional cost. Instead, our approach builds one beam hierarchy
(beam Kd-tree) every N passes of the progressive process to
avoid aliasing artifacts.

Moreover, storing view beams in a Kd-tree allows to ex-
tend to participating media the robust adaptive photon trac-
ing approach based on Metropolis strategy and proposed by
Hachisuka and Jensen [2]. These authors employ the photon
path visibility as a target function to better sample the path
space. They also use adaptive Markov Chain Monte Carlo to
determine the best mutations strategies. In addition, their ap-
proach relies on the replica Exchange Monte Carlo to avoid
the path sampling getting stuck at local peaks.

3 Background

The radiance at a point inside a participating medium is
computed by solving the radiative transfer equation (RTE)
[1]. Given a ray starting at a point x and going through the
medium until a point xs , the RTE provides the radiance at x

in direction ω as follows:

L(x,ω) =
∫ s

0
Tr

(
x ↔ x′)σs

(
x′)Li

(
x′,ω

)
dx′

+ Tr(x ↔ xs)L(xs,ω), (1)

where s is the distance traversed by the ray within the vol-
ume, Li(x

′,ω) the incoming radiance at x′ and scattered in
the direction ω. Other terms are defined in Table 1. For the
sake of clarity, Eq. (1) does not take into account the radi-
ance self-emitted by the medium, which is straightforward
to compute.

The first term in Eq. (1) expresses the radiance Lm gath-
ered along the ray through the medium. For a set of volume
photons, Lm can be expressed as in Beam Radiance Esti-
mate method [7]:

Lm ≈ 1

N

N∑
i=0

Ki(xi, ri)Tr
(
x ↔ x′

i

)
σs

(
x′
i

)
p(xi,ω,ωi)Φi, (2)

where Ki is a kernel function, xi the photon position, and x′
i

the projection of the photon position xi on the view ray.
The second term is the radiance Ls of a visible point on

the surface seen through the medium along the view ray.
This radiance is computed using density estimation as in
classical Progressive Photon Mapping [3] and is attenuated
by the medium:

Ls ≈ 1

N

N∑
i=0

fr(xi,ω,ωi)(n · ωi)Φi

πR2
s

× Tr(x ↔ xs) (3)

The total radiance for a view ray is L = Lm + Ls .

Table 1 Definition of quantities used in this article

Symbol Description

Φi Flux of photon i

σa Absorption coefficient

σs Scattering coefficient

σt Extinction coefficient

Tr(x ↔ x′) Transmittance between the points x and x′

Tr(x ↔ x′) = e− ∫ ‖x−x′‖
0 σt (x+tω)dt

p(x,ω,ω′) Normalized phase function

f r(x,ω,ω′) BRDF

Ls,Lm Radiance at a surface visible point or in a
medium beam respectively

Lt
s,L

t
m Cumulative radiance at a visible point or a

beam at the current iteration only

Ns,Nm Number of photons within a disk or in a
view beam since the beginning of the
rendering

Nt
s ,N

t
m Number of photons within a disk or in a

view beam in the current iteration only

Rs,Rm Radius of a disk associated with a visible
point or radius of a beam

α User parameter to control the convergence
rate

Algorithm 1 main()
1: for i = 1 to nbPass do
2: if i%N==0 then
3: Jitter-View-Rays(); // Jittering of view rays
4: Preprocess(); // Done every N passes
5: end if
6: for j = 1 to nbPhoton do
7: SendPhoton();
8: UpdateCurrentRadiance();
9: end for

10: Render();
11: UpdateImage();
12: UpdateRadii();
13: end for

4 Overview

Our method is depicted by the global Algorithm 1.
When rendering surfaces, the progressive photon map-

ping method assigns a disk to every visible point lying on
a surface. For volumes, we use beams rather than disks. To
each ray of a ray path, cast through a pixel and traversing
a medium, we assign a cylinder whose radius gets smaller
after each pass. This cylinder is called a beam from now
on. These beams get reflected/refracted if the associated ray
hits a specular or refracting surface. We build a beam Kd-
tree whose leaves are the resulting beams. When a ray hits
a diffuse or a glossy surface, directly or indirectly through

C. Collin et al.

Fig. 1 Different ways to gather photons. Regular ray marching (a) may take into account several time a same photon whereas Beam Radiance
Estimate (b) and our method (c) gathers all photons once and for all

specular reflection or refraction, the resulting hit point is
registered and assigned a disk-shaped influence zone. The
radius of this disk gets smaller after each pass. We build an-
other Kd-tree, called view Kd-Tree, whose leaves are those
hit points. We also precompute a 2D array storing ray paths
traced from the viewpoint through each pixel, as explained
later. To make our method computationally efficient, we de-
cided to perform this preprocessing every N passes (func-
tion Preprocess detailed in Sect. 5.1). For every new N

passes, we jitter (function Jitter-View-Rays) for each
pixel its associated view ray then perform again the prepro-
cessing. This allows to solve the aliasing artifacts with the
help of oversampling.

At each pass, a set of photons are shot, using the
SendPhoton function. Whenever one of those photons in-
teracts with a volume (or a surface), the top-down traversal
of the associated Kd-tree leads to beams (or visible points),
which allows to compute the current radiance, due to the
photon, of the hit points and the beams. Then the photon is
discarded instead of stored in a photon map. Next, these cur-
rent radiances are updated (UpdateCurrentRadiance
function) to account for all the successive shot photons.
Once all the photons have been shot, the image is computed
using the Render function.

For more efficiency, every contributive light path is mu-
tated using Metropolis, similarly to [2]. A light path is con-
sidered as contributive if one of its vertex contributes to vis-
ible points or beams. This increases the efficiency of the
shooting process.

To speed up the traversal of the view Kd-tree, we use a
same radius Rs for all disks. We also use a same radius Rm

for all beams for the same reason. This slightly affects the
efficiency of the method but the method keeps converging
to an unbiased result as proved in [11]. Further details about
these updates are given in Sect. 5.3.

Finally, at the end of each pass, the resulting image is
updated using the UpdateImage function, and so are the
radii (UpdateRadii function) of the disks and beams.
These steps are described in Sects. 5.4 and 5.5.

In Volume Photon Mapping, once the photon map is built
a ray is cast through each pixel and a costly ray marching

(or a Beam Radiance Estimate) is used to determine the rel-
evant photons used to compute the radiance associated with
the ray. Rather, in our approach, as soon as a photon inter-
acts with a medium it is assigned to one or more beams by
going down the beam Kd-Tree, and its contribution to the
scene is computed straightaway. This assignment operation
spares the use of ray marching (Fig. 1). Note that, unlike
other progressive volume photon mapping approaches, our
method is not dependent on the number of photons shot at
each pass, which allows to shoot as many photons as wanted
before starting the first rendering operation.

On the one hand, the use of a beam Kd-tree makes the es-
timation of the radiance assigned to each beam faster. On the
other hand, photon assignment requires the traversal of this
hierarchy which takes time. Overall, our hierarchy-based ap-
proach is far faster than ray marching as shown in the results
section.

5 Implementation details

In this section, only photons are shot from the light sources.
We will show in Sect. 6 that our approach can also handle
photon beams proposed in [6].

5.1 Preprocessing

Before starting any rendering, we need to initialize all the
needed data structures. A view ray, traced from the view-
point through a pixel (going through the participating media
or not), is repeatedly reflected off specular surfaces and/or
refracted. This results in a ray path. When a ray of a ray path
crosses a medium, it is assigned a cylinder beam. Thus, a ray
of a ray path is either a beam or a line segment the endpoints
of which are intersection points with surfaces. This process
results in a 2D array of ray paths. When computing the ray
paths, the intersection points of the rays of a ray path with
diffuse and glossy surfaces only, called visible points (points
visible directly or indirectly from the viewpoint of the cam-
era), are registered to compute a view Kd-tree as explained
hereafter. If a ray of a ray path does not intersect any par-
ticipating medium, it is assigned its endpoint (which is a hit

Visibility-driven progressive volume photon tracing

point), its current and cumulative radiances Ls and Lt
s . If a

ray of the ray path intersects a medium, then it is assigned a
beam generated after specular reflection and refraction (say
a cylinder of a certain radius (Fig. 2)), the transmittance Tr
of the beam, the endpoint (hitpoint) of the beam together
with its current and cumulative radiances Lm and Lt

m.
Once the path tracing has been completed, we obtain a 2D

array of ray paths, a set of beams and a set of visible points.
These three data structures are computed in one single pass.
We build a view Kd-tree from the visible points and a view-
dependent beam Kd-tree from the beams. Each visible point
is assigned a disk. A photon within this disk contributes to
the associated visible point. A photon contributes to a beam
if it lies in its associated cylinder. We store the view Kd-tree
rather than a photon map, which makes our method inde-
pendent of the number of light sources.

Recall that the radii associated with disks and beams de-
crease after each rendering pass. Note that the two Kd-trees
do not depend on the values of these radii. The view Kd-
tree is computed using a classical way, a disk being sorted
according to its center.

The beam Kd-tree, however, is created following the
method from Havran et al. [4], a beam being represented
by a line segment supported by its associated ray (beam
axis). The endpoints of this line segment are those of the

Fig. 2 Different possible view rays in a scene. The rays going through
the medium have view beams (in green) associated, and visible points
(in red) are created on diffuse surfaces

beam (Fig. 3b). The first step of building the beam tree is to
find the axis-aligned bounding box of all the beam segments,
which represents the root of the tree. Then a splitting plane
is chosen along the largest axis of that bounding box. All the
beam segments on one side of that plane are assigned to one
child, and the beams crossing this plane are assigned to both
children. The splitting operation is recursively repeated until
one of the stopping criteria is met (Fig. 3c):

• The number of beam segments in the current node is be-
low a threshold (typically 32 in our implementation).

• The depth of the current node reaches a maximum value
(between 20 and 30 for our scenes).

An internal node of the beam Kd-tree is a splitting plane
while each leaf is a set of beams. Each beam segment is
assigned a data structure, which contains a pointer to the as-
sociated beam computed in the preprocessing step. To com-
pute the contribution of a photon to the beams, the beam
Kd-tree is traversed top-down. For each node, if a photon
is located on one side of the associated splitting plane and
its orthogonal distance to this plane is larger a beam radius,
then the associated subtree is traversed, otherwise we tra-
verse the two subtrees. For each leaf node reached by the
traversal, we compute the contribution of the photon to the
beams corresponding to the beam segments within this leaf.
A photon contributes to a beam of this leaf if its orthogonal
distance to this beam is smaller than the beam radius.

5.2 Visibility-driven photon shooting process

The photons are shot from the light sources. When a pho-
ton enters a participating medium, the beam Kd-tree is tra-
versed top-down, and its contribution is brought to the leaf
beams containing it. When it hits a surface, we compute its
contribution to the visible points (nodes of the view Kd-tree
whose disk contains the photon) by a top-down traversal of
the view Kd-tree. In this way, as soon as a photon contributes
to a visible point or a beam, it is discarded.

Fig. 3 Example of a view beam Kd tree building for a set of beams (a). Only the supporting rays are used in the tree (b). Some leaves (c) contains
several beams, and beams crossing splitting planes are duplicated in the tree

C. Collin et al.

To handle complex lighting, such as environment map
lighting in highly occluded scenes (i.e., indoor scenes lit
through windows), lighting through double glazed win-
dows and lighting through participating media, we use a
Metropolis-based approach [2] to guide the photon shooting
process based on visibility information.

We use the same mutation strategy for surfaces and par-
ticipating media, but with different parameters determined
automatically according to the method presented in [2]. Un-
like in [2], we use two different Markov chains; one for the
surfaces and another for the participating media.

5.3 Radiance update

When a photon lies in a beam, it participates in the update
of the cumulative radiance Lt

m of the beam using Eq. (2):

Lt
m+ = K(xi, ri)Tr

(
x ↔ x′

i

)
σs

(
x′
i

)
p(xi,ω,ωi)Φi (4)

In case of heterogeneous medium, for a reason of effi-
ciency each beam data structure stores a lookup table of the
transmittance along the beam axis to quickly determine the
transmittance Tr(x ↔ x′).

When a photon lies in the disk associated with a visible
point, the radiance of this latter is updated using Eq. (3):

Lt
s+ = f r(xi,ω,ωi)(n · ωi)Φi

πR2
s

× Tr(x ↔ xs) (5)

5.4 Image update

Once a sufficient number of photons have been shot for the
current pass (iteration), the resulting image can be updated.
This step consists in updating the radiances Ls of the visible
points and the radiances Lm of the beams. It also updates the
radius values.

The radiances are updated using the same local photon
statistic as in Progressive Photon Mapping [3]:

Ls =
(

Ls + 1

Nt
s

Lt
s

)
Ns + Nt

s (1 − α)

Ns

(6)

This equation is valid for the update of beam radiance.
The radiance of a pixel brought by its associated ray path

is

L = TrnbBLs +
nbB∑
i=1

Tri−1Lm,i, (7)

where Lm,i is the radiance Lm of the ith beam of the
ray path, Tri the transmittance associated with this beam
(Tr1 = 1, the first beam starting from the viewpoint), nbB

the number of successive beams of the ray path, and TrnbB =∏nbB
i=1 Tri . Note that if nbB = 0 then L = Ls , which means

that the ray path does not cross any participating medium.

5.5 Radius update

Finally, in order to achieve convergence, we need to update
the radii as explained in [11]:

Rs = Rs

√
n + α

n + 1
, Rm = Rm

3

√
n + α

n + 1
, (8)

where n the number of the current iteration.
The contribution to the final image of one iteration is

noisy. With only one iteration, we can get only a blurry and
biased image, or a noisy and less biased one. Starting with
large radii makes the first iterations blurry, but decreasing
those radii after each iteration make the sharp details appear.

6 Results

In this section, we show some results obtained with our
method using different shooting techniques (without and
with metropolis optimization) and different kinds of particle
such as photon or photon beams. In this way, we demon-
strate that, although our method has been designed for pho-
ton tracing, it has been easily extended to photon beam trac-
ing. We compare our method with PPB, which is the most
related method, and APA which is another interesting ap-
proach, easy to implement since it is just a loop consist-
ing in running a classical volume photon mapping. We use
the following notations concerning different variants of our
method:

PPT our approach where photons are traced from the light
sources

PPBT our approach where photon beams are traced
PPT_metro our approach with photon tracing and Metro-

polis
PPBT_metro our approach with photon beam tracing and

Metropolis

We have implemented our methods as well as APA and PPB
using the Mitsuba renderer framework [5]. The different pa-
rameters used for each scene are given in Table 2 (α = 0.7
for all the methods). The results have been obtained on a
computer supplied with two 2.4 GHz Intel Xeon E5645 CPU
(12 cores). Each method is executed in a multithreading con-
text to use the 12 cores of the computer. For comparison, we
have generated reference images using path tracing.

In the dragon smokes scene (Fig. 5), as the lighting condi-
tions are quite simple the metropolis optimization is not re-
ally useful (except for the smoke which covers a small part
of the scene). Indeed, the majority of the photon paths are
visible so few of them need mutation. However, as shown
in Fig. 4, our method (with different variants) performs as
well as APA or PPB. In the two next scenes, breakfast hall
and kitchen (Figs. 6 and 7), the lighting conditions are more

Visibility-driven progressive volume photon tracing

Table 2 Rendering parameters: each method is stopped at the same rendering time (rightmost column). Volume Photons = number of volume
photons shot per pass in APA and PPT; Photon Beams = number of photons beams in PPB and PPBT

Polygons Resolution # Volume photons # Photon beams # Surface photons Rendering time

Dragon smokes 100k 768 × 768 50k 5k 100k 1 h

Breakfast hall 1600k 1080 × 1920 100k 10k 100k 10 h

Kitchen 250k 720 × 1280 100k 10k 500k 10 h

Fig. 4 Plots of the RMSE (between a reference image generated using
path tracing and all the methods) as a function of time

complex. In the breakfast scene, light goes through the win-
dows and the hall is filled with a homogeneous medium. The
outside is represented by a horizontal large plane a small
part of which is visible through the windows. This scene
is challenging for Metropolis as well as for uniform sam-
pling based methods. Indeed, for hitpoints lying outside,
replica exchange builds a lot of useless paths that mutate
outdoors while they are less contributive to the final im-
age. This is why PPT without Metropolis performs as well
as PPT_metro in the beginning of the progressive process
(Fig. 4), but PPT_metro gets more and more efficient af-

ter a certain number of iterations. This can be explained as
follows. First, after a certain number of iterations the burn-
in period has elapsed. Second, the beam radius gets small,
which makes difficult to find contributive paths. Thanks
to mutations (enabling local exploration), Metropolis found
contributive paths more efficiently.

As shown in this figure, our method PPT_metro con-
verges faster than APA and PPB. The kitchen scene is
lighted, through the double-glazed window, by a clear sky
and the sunlight. The kitchen is filled with a heterogeneous
medium. In Fig. 7, we show results obtained with different
methods. We can see (close-up views) that Metropolis gives
better visual results.

6.1 Discussion and future works

All the six presented methods suffer from the limitation of
photon mapping. This limitation is a starting bias highly de-
pending on the initial parameters (initial radii, number of
photons, α, etc.)

Recall that our method guides the photon shooting pro-
cess based on a Metropolis strategy that uses Adaptive
Markov Chain Monte Carlo (AMCMC). Our experiments
showed that AMCMC converges toward a small mutation
size. This is why we initialize AMCMC with a mutation
size smaller than the one proposed in [2] (0.1 gives good
results). An interesting future work is to propose a better
adaptive process to converge faster toward an optimal muta-
tion size. Finally, using only visibility as an importance sam-
pling function can fail in some cases. Indeed, visible pho-
ton paths may have a weak contribution to the final image
(due to glossiness or transmittance in the volume). Finding
a new importance sampling function, which takes into ac-
count these cases is a challenge.

7 Conclusion

We have proposed a global illumination method that han-
dles scenes containing surface objects (diffuse, glossy, spec-
ular, and refractive) and participating media (homogeneous
and heterogeneous). The method computes three data struc-
tures in a preprocessing step: view Kd-tree, view dependent
beam Kd-tree and a 2D array of ray paths. No photon maps,

C. Collin et al.

Fig. 5 Dragon smokes scene. Leftmost image is the reference image. Closup views for the different methods showing that all the methods converge
to the reference solution

Fig. 6 Breakfast hall scene (courtesy of Greg Zaal). Top left image: reference image. Rightmost column: images obtained for the different methods
after 10 h. Closup views for different methods and for 30 min and 1 h

Visibility-driven progressive volume photon tracing

Fig. 7 Kitchen scene (courtesy of Jay-Artist). Top left image: result obtained with PPT_metro. Rightmost column: images obtained for the different
methods after 10 h. Closup views for different methods and for 30 min and 1 h

nor volume photon maps are stored in memory. Moreover,
the beams that are not visible from the viewpoint are not
computed. Consequently, our method is not constrained by
a beam budget due to memory limitation, which makes send-
ing a large number of photons in one pass of the progressive
process possible. To increase efficiency, our method uses
Metropolis and visibility information to guide the photon
shooting process. The results have shown that our approach
converges faster to a same solution (image of a given RMSE)

than APA [11] and the CPU version of PPB [6]. Even though
our method has been implemented on the CPU, the obtained
results demonstrate that our approach is fast. Another inter-
esting feature of our method is that it could be easily trans-
formed from progressive to interactive. More precisely, the
user can set the number of photons to a very high value (this
is possible since the photons are not stored), launches the
program, interrupts it whenever he wants to display a result-
ing image, then restarts it to get a better image, and so on.

C. Collin et al.

Acknowledgements Charly Collin has been supported in part by
NSF grant IIS-1064427. Thanks go to the reviewers for their valuable
reviews.

References

1. Chandrasekhar, S.: Radiative Transfer. Dover, New York (1960)
2. Hachisuka, T., Jensen, H.W.: Robust adaptive photon tracing using

photon path visibility. ACM Trans. Graph. 30(5), 114:1–114:11
(2011)

3. Hachisuka, T., Ogaki, S., Jensen, H.W.: Progressive photon map-
ping. ACM Trans. Graph. 27, 130:1–130:8 (2008)

4. Havran, V., Bittner, J., Seidel, H.P.: Ray maps for global illumina-
tion. In: ACM SIGGRAPH 2004 Sketches, SIGGRAPH’04, p. 77.
ACM, New York (2004)

5. Jakob, W.: Mitsuba renderer (2010). http://www.mitsuba-renderer.
org

6. Jarosz, W., Nowrouzezahrai, D., Thomas, R., Sloan, P.P., Zwicker,
M.: Progressive photon beams. In: Proceedings of ACM SIG-
GRAPH Asia. ACM Trans. Grap., vol. 30(6) (2011)

7. Jarosz, W., Zwicker, M., Jensen, H.W.: The beam radiance es-
timate for volumetric photon mapping. Comput. Graph. Forum
27(2), 557–566 (2008) (Proceedings of Eurographics 2008)

8. Jensen, H.W.: Realistic Image Synthesis Using Photon Mapping.
Peters, Natick (2001)

9. Jensen, H.W., Christensen, P.H.: Efficient simulation of light trans-
port in sciences with participating media using photon maps. In:
Proceedings of the 25th Annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH’98, pp. 311–320.
ACM, New York (1998)

10. Keller, A.: Instant radiosity. In: Proceedings of the 24th Annual
Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH’97, pp. 49–56. ACM Press/Addison-Wesley, New
York (1997)

11. Knaus, C., Zwicker, M.: Progressive photon mapping: a proba-
bilistic approach. ACM Trans. Graph. 30, 25:1–25:13 (2011)

12. Novák, J., Nowrouzezahrai, D., Dachsbacher, C., Jarosz, W.: Pro-
gressive virtual beam lights. In Proceedings of EGSR 2012. Com-
put. Graph. Forum, vol. 31(4) (2012)

13. Novák, J., Nowrouzezahrai, D., Dachsbacher, C., Jarosz, W.: Vir-
tual ray lights for rendering scenes with participating media. In:
Proceedings of ACM SIGGRAPH 2012. ACM Trans. Graph.,
vol. 31(4) (2012)

Charly Collin is a PhD student
and research assistant in the Depart-
ment of Electrical Engineering and
Computer Science at University of
Central Florida. His research inter-
ests are volume rendering, BRDF
computation and rendering of po-
larization effects. He received his
MS degree from the University of
Rennes 1 (France) in 2011.

Mickaël Ribardière received his
Master’s degree in computer sci-
ence in 2007 from the University of
Limoges, and a PhD degree in 2010
from the University of Rennes 1.
He is currently Research Scientist
in the FRVSense team at IRISA
(Institut de Recherche en Informa-
tique et Systèmes Aléatoires). His
research interests are global illumi-
nation, lighting simulation for com-
plex environment and computer vi-
sion.

Adrien Gruson graduated from the
Unitersity of Rennes 1, majoring in
Digital Imagery. For his last year
internship, he went to work for 6
months at UCF (University of Cen-
tral Florida) under Sumanta Pat-
tanaik’s supervision on the topic of
tone mapping and white balancing
for walkthrough. After this intern-
ship, he received a research grant
(MESR) to work on his PhD the-
sis: Interactive global illumination
in large environments, and joined
the research team FRVSense, under
the supervision of Rémi Cozot and
Kadi Bouatouch.

Rémi Cozot is an assistant profes-
sor at the University of Rennes 1
and a member of the FRVSense re-
search team at IRISA. His research
interests include enhancement of
real-time rendering using human vi-
sion features and color and light
adaptation. He is also involved in
global illumination. Cozot received
his PhD in computer science from
the University of Rennes 1.

Sumanta Pattanaik is an associate
professor of Computer Science in
the Department of Electrical Engi-
neering and Computer Science at
University of Central Florida. His
research interests include realistic
image synthesis and realistic real-
time rendering. Pattanaik has a PhD
in Computer Science from Birla In-
stitute of Technology and Science
(BITS), Pilani. He is a member of
IEEE and ACM. Contact him at
sumant@cs.ucf.edu.

http://www.mitsuba-renderer.org
http://www.mitsuba-renderer.org
mailto:sumant@cs.ucf.edu

Visibility-driven progressive volume photon tracing

Kadi Bouatouch was an electron-
ics and automatic systems engineer
(ENSEM 1974). He was awarded a
PhD in 1977 and a higher doctor-
ate in computer science in the field
of computer graphics in 1989. He
is working on global illumination,
lighting simulation for complex en-
vironments, GPU based rendering
and computer vision. He is cur-
rently Professor at the University of
Rennes 1 (France) and researcher at
IRISA (Institut de Recherche en In-
formatique et Systèmes Aléatoires).
He is member of Eurographics.

	Visibility-driven progressive volume photon tracing
	Abstract
	Introduction
	Related work
	Discussion

	Background
	Overview
	Implementation details
	Preprocessing
	Visibility-driven photon shooting process
	Radiance update
	Image update
	Radius update

	Results
	Discussion and future works

	Conclusion
	Acknowledgements
	References

